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Motivation  
Many (DoD) systems are Cyber-Physical 
• Software tightly coupled with physical world 
• Increased scale, complexity, autonomy 

– Pilot Ejection ⇒ IMA ⇒ Multi-UAS Missions 
 
Current DoD T&E regimen is expensive & inadequate to assure CPS 
• Testing-based (poor coverage) 
• Sufficient assurance needed for Certification 

 
Rigorous assurance of CPS must include at least timing, functionality, and 
coordination 
• Task1 : Timing ⇒ Schedulability analysis: multicore and memory interference 
• Task 2: Functional ⇒ Model Checking: scalability, physical laws 
• Task 3: Coordination ⇒ Prob. Mod. Checking: compositionality, uncertainty 
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Guiding Scenario: Multi-UAS Mission 

Timing: Collision Avoidance 
Tasks Must Meet Deadlines 

Functional: Tasks Free of 
Deadlocks and Race Conditions 

Coordination: Optimal Coverage 
Within Mission Limit 

Timing, functional correctness, and high-quality coordination are critical to success of 
modern CPSs. Each must be assured for high confidence in overall performance. 
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Task 1: Multicore Challenges for Real-Time Systems 

Parallelization 
• Computation time > Deadline 

– Must parallelized to meet deadline 
– Guarantee always finish before deadline 

 
Shared Hardware Resources / Best Effort Schedulers 
• Shared memory system creates unpredictable delays 
• Memory accesses scheduled for average case hinder worst-case 

 
Multiple elements to coordinate 
• Shared cache 
• Shared main memory 
• Shared memory bus 

Deadline 
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Predictable Parallelization 

Developed a staged execution model 
 
 
 
 
 
 
Scheduled under Global Earliest-Deadline First  
• Most efficient scheduling for staged execution 

– If task schedulable under optimal scheduler our scheduler need at most 
twice the speed to schedule task 
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Example: Parallel Image Processing 
Edge  
detection 

Core 1 

Core 3 

Core 4 

Core 2 

Shape 
classification 

Shape 
matching 

Multicore 
Processor 

Divide image to process 
pieces in parallel 
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Shared Hardware: Multicore Memory System 

L1/L2 

Core 1 

L1/L2 

Core 2 

L1/L2 

Core 3 

L1/L2 

Core N … 

Last-Level Cache (L3) 

Memory Bus (and Mem Controller) 

DRAM 
Bank 0 

DRAM 
Bank 1 

DRAM 
Bank 2 

DRAM 
Bank 2 

DRAM 
Bank B … 
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DRAM Organization 
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Impact of Memory Interference 
• 1 attacker   Max 5.5x increase 
• 2 attackers  Max 8.4x increase 
• 3 attackers  Max 12x increase 
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Timing Analysis with Bank Partitions (private/shared) 

Explicitly considers the timing characteristics of major DRAM 
resources 
• Rank/bank/bus timing constraints (JEDEC standard) 
• Request re-ordering effect 

 

Bounding memory interference delay for a task 
• Combines request-driven and job-driven approaches 

 
 
 

Software DRAM bank partitioning awareness 
• Analyzes the effect of dedicated and shared DRAM banks 

 

Task’s own memory requests Interfering memory requests  
during the job execution 
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Page Coloring with Virtual Memory 

…
 

Bank 0 

Bank 1 

Bank 2 

…
 

Virtual Memory 

Page table 
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Timing Verification: Response Time(Ri) < Deadline (Di) 

L1/L2 

Core 2 

DRAM 
Bank 0 

time 
Ri Di 
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Timing Verification: Response Time(Ri) < Deadline (Di) 

L1/L2 

Core 2 

DRAM 
Bank 0 

time 
Ri Di 
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Timing Verification: Response Time(Ri) < Deadline (Di) 
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Core 1 

Per request Per job 
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Memory Interference with private banks 

• Private DRAM Bank 
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H.Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. “Bounding Memory  
Interference Delay in COTS-Based Multicore Systems.” RTAS 2014. Best Paper. 
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Cache Partitioning (Coloring) 

Cache 

Main Mem 

Set associativity 

16 15 14 13 12 Address bits 

Cache Index 

6 

Cache sets 
One page 
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Cache and Bank Address Bits 
Cache Index 

19 18 17 16 15 Address bits 
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Bank Index 

E.g. 2 bank bits 
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Coordinated Cache and Bank Partitioning 

Avoid conflicting color assignments  
 
Take advantage of different conflict behaviors 
• Banks can be shared within same core but not across cores 
• Cache cannot be shared within or across cores 
 

Take advantage of sensitivity of execution time to cache 
• Task with highest sensitivity to cache is assigned more cache 
• Diminishing returns taken into account 

 
Two algorithms explored 
• Mixed-Integer Linear Programming 
• Knapsack 
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Experimental Results 
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N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar.  
“Coordinated Bank and Cache Coloring for Temporal Protection of Memory Access.” ICESS 2013.  
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Partitions & Scheduling in Parallelized Tasks 

L1/L2 
Core 1 

L1/L2 
Core 2 

L1/L2 
Core 3 

L1/L2 
Core N … 

Memory Bus (and Mem Controller) 

DRAM 
Bank 0 

DRAM 
Bank 1 

DRAM 
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DRAM 
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DRAM 
Bank B … 

Bank  
Partitions 
Per segment 

Cache 
Partitions 
Per segment 

Global core 
scheduling (gEDF) 

Shared Cache 

Mixed Integer-Linear 
Programming: 
- cache+bank partitions 
  per page 
- Interference between 
  Parallel segments  
- Interference between 
  tasks 

B. Andersson, D. de Niz, H. Kim, M. Klein, and R. Rajkumar. “Scheduling Constrained-Deadline  
Sporadic Parallel Tasks Considering Memory Contention.” Submitted to: IPDPS 2015. 
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Round-trip parallelized tasks scheduling 

Measure memory accesses per page in a task 
• Modified Valgrind profiler to count accesses to a particular virtual page in a 

program running on the target platform 
 
Assign cache + bank colors to each page and test schedulability 

• Mixed-Integer Linear Programming Formulation 
• Outputs page per color 

 
Modified Memory System (inside OS) to assign colors per page 

• Linux variant (Linux / RK) 
• Assign memory reservations (colors) to task and color regions to pages 
• Cache + Bank colors 

Global Earliest-Deadline First (gEDF) implementation 
• In Linux / RK 

Stage Synchronization Framework 
• For Parallel Staged Tasks 

Experiments on Intel i7 quad-core 8GB RAM + 8MB Shared Cache 
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Task 2: Software Model Checking Using Over 
and Under Approximations 

Sequentialization Software Model 
Checker 

Periodic Program in C 
Sequential Program OK 

BUG + CEX 

Periods, WCETs, Initial 
Condition, Time bound Result 1: Improved 

SMC by Combining 
Over and Under 
Approximations  

REK 

Result 2: Improved 
Sequentialization by Using 
Memory Consistency Rles 
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Task 2: Improved Software Model Checking 
Using Over and Under Approximations 

Program P 

, 
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u 
2: SOLV E 
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Software Engineering Institute I Carnt~git~ 1\lellon Univt•r·sity 
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Task 2: Improved Software Model Checking 
Using Over and Under Approximations 

Publication: Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki: SMT-
Based Model Checking for Recursive Programs. CAV 2014: 17-34 

Sound, 
Relatively 
Complete 

Maintain over-approx 
and under-approx 

simultaneously 



26 
Fall 2014 SEI Research Review 
de Niz Oct 28th, 2014 
© 2014 Carnegie Mellon University 

Task 2: Model Checking Results 
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Spacer vs. PDR

Spacer=PDR

Software Verification 
Competition 2014 
Benchmarks 
 
Total = 855 
 
RECMC better = 553 
PDR better = 232 

PDR = State-of-the-art competitor for RECMC 
NOTE: below red line means RECMC better than PDR 

TODO: 
 
Bit-vector semantics 
 
Physical laws : additional 
theories 
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Task 2: Improved Sequentialization Using 
Memory Consistency Rules 

Periodic 
Program 

Verification 
Condition 

Generation 

𝑽𝑽𝑽𝑽 = 
𝑽𝑽𝑽𝑽𝒔𝒔𝒔𝒔𝒔𝒔 ∧ 𝑽𝑽𝑽𝑽𝒄𝒄𝒄𝒄𝒄𝒄 ∧ 𝑽𝑽𝑽𝑽𝒐𝒐𝒐𝒐𝒔𝒔 

SMT 
Formula 

SMT 
Solver 

OK 

BUG + CEX 

1. 𝑉𝑉𝑉𝑉 is generated by using logical 
Lamport clocks that encode the 
priority-based preemption between 
threads 

2. Further optimization using 
variables “snapshots” that reduce 
redundant sub-formulas in 𝑉𝑉𝑉𝑉 

3. 7 times faster than previous 
version of REK on benchmarks 

Publication: Sagar Chaki, Arie Gurfinkel, Nishant Sinha: Efficient Verification of 
Periodic Programs Using Sequential Consistency and Snapshots. FMCAD 2014 
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Task 3: Probabilistic Model Checking to 
evaluate Coordinated Multi-Robot Missions 

Base 
Station 

Mine 

Culvert 

Kilobot 

Each robot is Markovian 
• 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  (𝑥𝑥, 𝑦𝑦, 𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠,𝑑𝑑𝑡𝑡𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡𝑑𝑑𝑠𝑠_𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑).  

No physical interaction, e.g., robots pass through 
Property 𝝓𝝓𝟏𝟏 = Probability of mine detection. 

𝑷𝑷 =?𝑭𝑭(𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔𝒄𝒄𝒅𝒅𝒔𝒔𝒅𝒅𝟏𝟏 ∨ 𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔𝒄𝒄𝒅𝒅𝒔𝒔𝒅𝒅𝟐𝟐 ∨ 𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔𝒄𝒄𝒅𝒅𝒔𝒔𝒅𝒅𝟑𝟑) 
Property 𝝓𝝓𝟐𝟐 = Probability of detection and return to base. 

𝑷𝑷 =?𝑭𝑭(𝒅𝒅𝒔𝒔𝒅𝒅𝒔𝒔𝒄𝒄𝒅𝒅𝒔𝒔𝒅𝒅𝟏𝟏 ∧ 𝒅𝒅𝒅𝒅𝒓𝒓𝟏𝟏 = 𝒐𝒐𝒃𝒃𝒄𝒄𝒄𝒄 ∧ 𝒙𝒙𝟏𝟏 = 𝟎𝟎 ∧ 𝒚𝒚𝟏𝟏 = 𝟏𝟏… ) 
Property 𝝓𝝓𝟑𝟑 = Expected number of robots returning to base. 

No localization, disc model 
of communication (i.e., 

within radius), probabilistic 
movement 

Base station and 
Mine have disc 
model of 
communication 

Guiding Example 
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Overall Approach 

𝑴𝑴𝟏𝟏 

𝑴𝑴𝟐𝟐 

𝑴𝑴𝟑𝟑 

DTMC 𝑴𝑴�  PRISM 

Probabilistic Model 
Checker for DTMCs 

Result 𝒑𝒑� 

Validated by comparing predicted 
performance with measurements from 
actual team runs 

Individual state 
machines are linked 
via communication 

between DTMCs 

Modal DTMC 
{𝑴𝑴𝟏𝟏,𝑴𝑴𝟐𝟐,𝑴𝑴𝟑𝟑} 
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Technical Details 

𝑴𝑴𝟏𝟏 

𝑴𝑴𝟐𝟐 

𝑴𝑴𝟑𝟑 

Modal DTMC 
{𝑴𝑴𝟏𝟏,𝑴𝑴𝟐𝟐,𝑴𝑴𝟑𝟑} 

〈𝑴𝑴𝟏𝟏, 𝒅𝒅𝟏𝟏〉 

Projection of 𝑴𝑴𝟏𝟏 
assuming model 
change at time 𝒅𝒅𝟏𝟏 

〈𝑴𝑴𝟏𝟏, 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟑𝟑, 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟑𝟑, 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟐𝟐, 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟐𝟐, 𝒅𝒅𝒄𝒄〉 

DTMC 𝑴𝑴�  

𝑻𝑻𝑻𝑻𝒔𝒔𝒐𝒐𝒓𝒓𝒔𝒔𝑻𝑻𝟏𝟏 ∶ 𝑴𝑴𝟏𝟏,𝑴𝑴𝟐𝟐,𝑴𝑴𝟑𝟑 = 𝑴𝑴�  

Project 

Combine 

PRISM 
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Computing 〈𝑴𝑴𝒅𝒅, 𝒅𝒅𝒋𝒋〉 

Physically run Kilobot 𝑅𝑅𝑖𝑖 and force it to turn around at 𝑠𝑠𝑗𝑗 
• Discretize time and space 
• Reprogram controller to “fake” mine detection at time 𝑠𝑠𝑗𝑗 
• Transition probability matrix of 〈𝑴𝑴𝒅𝒅, 𝒅𝒅𝒋𝒋〉 is defined as: 

• 𝑃𝑃 𝑠𝑠, 𝑠𝑠′ = 𝑛𝑛(𝑠𝑠,𝑠𝑠′)
𝑛𝑛(𝑠𝑠)

 

• 𝑑𝑑 𝑠𝑠  = no. of times robot was in state s 
• 𝑑𝑑(𝑠𝑠, 𝑠𝑠′) = no. of times robot moved from 𝑠𝑠 to 𝑠𝑠𝑠 in one time step 

 
Tedious to repeat these experiments using actual Kilobots 

• Use a simulator (VREP) 
• Tune parameters to reproduce behavior observed with real Kilobots 

 
At least two sources of error 

• Finite number of observations & space and time discretization 
• Both will remain no matter how much effort we put in 
• How do we quantify and bound the error? 
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Error Quantification: Fuzzy Sampling 

〈𝑴𝑴𝟏𝟏� , 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟏𝟏� , 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟑𝟑� , 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟑𝟑� , 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟐𝟐� , 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟐𝟐� , 𝒅𝒅𝒄𝒄〉 

𝑴𝑴�  

〈𝑴𝑴𝟏𝟏, 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟏𝟏, 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟑𝟑, 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟑𝟑, 𝒅𝒅𝒄𝒄〉 

〈𝑴𝑴𝟐𝟐, 𝒅𝒅𝟏𝟏〉 

〈𝑴𝑴𝟐𝟐, 𝒅𝒅𝒄𝒄〉 

Projections 
Constructed 𝑷𝑷 

Perturbed Projection Constructed using Dirichlet 
distributions with parameter 𝑷𝑷 

PRISM 𝒑𝒑� 

Repeat this process to obtain 𝑷𝑷� = {𝒑𝒑𝟏𝟏, … ,𝒑𝒑𝒏𝒏} 
𝑻𝑻𝑻𝑻𝒔𝒔𝒐𝒐𝒓𝒓𝒔𝒔𝑻𝑻𝟐𝟐. 𝑰𝑰𝒅𝒅 𝑻𝑻𝒃𝒃𝒔𝒔 𝒄𝒄𝒃𝒃𝒏𝒏 𝒐𝒐𝒔𝒔 𝒔𝒔𝑻𝑻𝒐𝒐𝒔𝒔𝒏𝒏 𝒅𝒅𝑻𝑻𝒃𝒃𝒅𝒅 𝑷𝑷� 𝑻𝑻𝒃𝒃𝒔𝒔  
𝒅𝒅𝑻𝑻𝒔𝒔 𝒔𝒔𝒃𝒃𝑻𝑻𝒔𝒔 𝒅𝒅𝒅𝒅𝒔𝒔𝒅𝒅𝒓𝒓𝒅𝒅𝒐𝒐𝒅𝒅𝒅𝒅𝒅𝒅𝒐𝒐𝒏𝒏 𝒃𝒃𝒔𝒔 𝒅𝒅𝑻𝑻𝒔𝒔 𝒑𝒑𝒓𝒓𝒐𝒐𝒐𝒐𝒃𝒃𝒐𝒐𝒅𝒅𝒄𝒄𝒅𝒅𝒅𝒅𝒚𝒚 𝒐𝒐𝒐𝒐  
𝒃𝒃 𝒓𝒓𝒔𝒔𝒃𝒃𝒄𝒄 𝒏𝒏𝒅𝒅𝑻𝑻𝒐𝒐𝒔𝒔𝒓𝒓 𝒐𝒐𝒔𝒔𝒅𝒅𝒏𝒏𝒃𝒃 𝒅𝒅𝑻𝑻𝒔𝒔 𝒄𝒄𝒐𝒐𝒓𝒓𝒓𝒓𝒔𝒔𝒄𝒄𝒅𝒅 𝒓𝒓𝒔𝒔𝒔𝒔𝒅𝒅𝒄𝒄𝒅𝒅 𝒃𝒃𝒅𝒅𝒈𝒈𝒔𝒔𝒏𝒏  
𝒅𝒅𝑻𝑻𝒔𝒔 𝒔𝒔𝒈𝒈𝒅𝒅𝒅𝒅𝒔𝒔𝒏𝒏𝒄𝒄𝒔𝒔 𝒅𝒅𝒔𝒔𝒔𝒔𝒅𝒅 𝒅𝒅𝒐𝒐 𝒄𝒄𝒐𝒐𝒏𝒏𝒔𝒔𝒅𝒅𝒓𝒓𝒅𝒅𝒄𝒄𝒅𝒅 𝒑𝒑𝒓𝒓𝒐𝒐𝒋𝒋𝒔𝒔𝒄𝒄𝒅𝒅𝒅𝒅𝒐𝒐𝒏𝒏𝒔𝒔. 

Compute the 90% credible interval 
of 𝑷𝑷�, i.e., the 5th and 95th percentile. 
Verify whether actual observations 

lie in this interval. 
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Results: Probability that one Robot detected the 
mine and returned to the base = Success 

Each projection constructed using 30 simulations 

Team in 
Release 
Order 

Observed Predicted Sample 
Mean 

Sample 
5% 

Sample 
95% 

3-2-1 1 0.96 0.96 0.91 0.99 
4-6-1 0.97 0.96 0.96 0.91 0.99 
4-6-2 0.47 0.43 0.43 0.29 0.58 
5-6-2 0.5 0.43 0.43 0.28 0.61 
5-6-7 0 0 0 0 0 
6-1-7 0.93 0.96 0.96 0.91 0.99 
6-5-7 0 0 0 0 0 
7-3-5 0.7 0.83 0.83 0.72 0.92 
7-3-6 0.83 0.83 0.84 0.74 0.92 
7-6-1 0.9 0.96 0.96 0.92 0.99 
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Results: Expected Number of Robots that 
Returned to the Base 

Publication: Sagar Chaki, Joseph Andrew Giampapa, David Kyle, John P. Lehoczky: Optimizing 
Robotic Team Performance with Probabilistic Model Checking. SIMPAR 2014: 134-145 

Team in 
Release 
Order 

Observed Predicted 
Oneshot 

Sample 
Mean 

Sample 
5% 

Sample 
95% 

3-2-1 2.2 2.17 2.17 1.97 2.38 
4-6-1 1.67 1.23 1.23 1.14 1.33 
4-6-2 0.83 0.7 0.7 0.55 0.89 
5-6-2 0.83 0.72 0.73 0.53 0.91 
5-6-7 0.43 0.29 0.29 0.19 0.38 
6-1-7 1.57 1.23 1.24 1.14 1.35 
6-5-7 0.2 0.29 0.3 0.19 0.41 
7-3-5 0.7 0.85 0.85 0.73 0.94 
7-3-6 1.17 1.11 1.12 0.95 1.25 
7-6-1 1.63 1.23 1.24 1.13 1.34 
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